fal_client package¶
Submodules¶
fal_client.auth module¶
- class fal_client.auth.GoogleColabState¶
Bases:
object
- exception fal_client.auth.MissingCredentialsError¶
Bases:
Exception
- fal_client.auth.fetch_credentials()¶
- Return type:
str
- fal_client.auth.get_colab_token()¶
- Return type:
Optional
[str
]
- fal_client.auth.is_google_colab()¶
- Return type:
bool
fal_client.client module¶
- class fal_client.client.AppId(owner, alias, path, namespace)¶
Bases:
object
-
alias:
str
¶
-
namespace:
Optional
[str
]¶
-
owner:
str
¶
-
path:
Optional
[str
]¶
-
alias:
- class fal_client.client.AsyncCDNTokenManager(key)¶
Bases:
object
- class fal_client.client.AsyncClient(key=None, default_timeout=120.0)¶
Bases:
object
- async cancel(application, request_id)¶
- Return type:
None
-
default_timeout:
float
= 120.0¶
- get_handle(application, request_id)¶
- Return type:
-
key:
str
|None
= None¶
- async result(application, request_id)¶
- Return type:
Dict
[str
,Any
]
- async run(application, arguments, *, path='', timeout=None, hint=None)¶
Run an application with the given arguments (which will be JSON serialized). The path parameter can be used to specify a subpath when applicable. This method will return the result of the inference call directly.
- Return type:
Dict
[str
,Any
]
- async stream(application, arguments, *, path='/stream', timeout=None)¶
Stream the output of an application with the given arguments (which will be JSON serialized). This is only supported at a few select applications at the moment, so be sure to first consult with the documentation of individual applications to see if this is supported.
The function will iterate over each event that is streamed from the server.
- Return type:
AsyncIterator
[dict
[str
,Any
]]
- async submit(application, arguments, *, path='', hint=None, webhook_url=None, priority=None)¶
Submit an application with the given arguments (which will be JSON serialized). The path parameter can be used to specify a subpath when applicable. This method will return a handle to the request that can be used to check the status and retrieve the result of the inference call when it is done.
- Return type:
- async subscribe(application, arguments, *, path='', hint=None, with_logs=False, on_enqueue=None, on_queue_update=None, priority=None)¶
- async upload(data, content_type, file_name=None)¶
Upload the given data blob to the CDN and return the access URL. The content type should be specified as the second argument. Use upload_file or upload_image for convenience.
- Return type:
str
- async upload_file(path)¶
Upload a file from the local filesystem to the CDN and return the access URL.
- Return type:
str
- async upload_image(image, format='jpeg')¶
Upload a pillow image object to the CDN and return the access URL.
- Return type:
str
- class fal_client.client.AsyncRequestHandle(request_id, response_url, status_url, cancel_url, client)¶
Bases:
_BaseRequestHandle
- async cancel()¶
Cancel the request.
- Return type:
None
-
client:
AsyncClient
¶
- classmethod from_request_id(client, application, request_id)¶
- Return type:
- async get()¶
Wait till the request is completed and return the result.
- Return type:
Dict
[str
,Any
]
- class fal_client.client.CDNToken(token, token_type, base_upload_url, expires_at)¶
Bases:
object
-
base_upload_url:
str
¶
-
expires_at:
datetime
¶
- is_expired()¶
- Return type:
bool
-
token:
str
¶
-
token_type:
str
¶
-
base_upload_url:
- class fal_client.client.Completed(logs, metrics)¶
Bases:
Status
Indicates the request has been completed and the result can be gathered. The logs field will contain the logs if the status operation was called with the with_logs parameter set to True. Metrics might contain the inference time, and other internal metadata (number of tokens processed, etc.).
-
logs:
list
[dict
[str
,Any
]] |None
¶
-
metrics:
dict
[str
,Any
]¶
-
logs:
- exception fal_client.client.FalClientError¶
Bases:
Exception
- class fal_client.client.InProgress(logs)¶
Bases:
Status
Indicates the request is currently being processed. If the status operation called with the with_logs parameter set to True, the logs field will be a list of log objects.
-
logs:
list
[dict
[str
,Any
]] |None
¶
-
logs:
- class fal_client.client.Queued(position)¶
Bases:
Status
Indicates the request is enqueued and waiting to be processed. The position field indicates the relative position in the queue (0-indexed).
-
position:
int
¶
-
position:
- class fal_client.client.Status¶
Bases:
object
- class fal_client.client.SyncClient(key=None, default_timeout=120.0)¶
Bases:
object
- cancel(application, request_id)¶
- Return type:
None
-
default_timeout:
float
= 120.0¶
- get_handle(application, request_id)¶
- Return type:
-
key:
str
|None
= None¶
- result(application, request_id)¶
- Return type:
Dict
[str
,Any
]
- run(application, arguments, *, path='', timeout=None, hint=None)¶
Run an application with the given arguments (which will be JSON serialized). The path parameter can be used to specify a subpath when applicable. This method will return the result of the inference call directly.
- Return type:
Dict
[str
,Any
]
- stream(application, arguments, *, path='/stream', timeout=None)¶
Stream the output of an application with the given arguments (which will be JSON serialized). This is only supported at a few select applications at the moment, so be sure to first consult with the documentation of individual applications to see if this is supported.
The function will iterate over each event that is streamed from the server.
- Return type:
Iterator
[dict
[str
,Any
]]
- submit(application, arguments, *, path='', hint=None, webhook_url=None, priority=None)¶
Submit an application with the given arguments (which will be JSON serialized). The path parameter can be used to specify a subpath when applicable. This method will return a handle to the request that can be used to check the status and retrieve the result of the inference call when it is done.
- Return type:
- subscribe(application, arguments, *, path='', hint=None, with_logs=False, on_enqueue=None, on_queue_update=None, priority=None)¶
- upload(data, content_type, file_name=None)¶
Upload the given data blob to the CDN and return the access URL. The content type should be specified as the second argument. Use upload_file or upload_image for convenience.
- Return type:
str
- upload_file(path)¶
Upload a file from the local filesystem to the CDN and return the access URL.
- Return type:
str
- upload_image(image, format='jpeg')¶
Upload a pillow image object to the CDN and return the access URL.
- Return type:
str
- class fal_client.client.SyncRequestHandle(request_id, response_url, status_url, cancel_url, client)¶
Bases:
_BaseRequestHandle
- cancel()¶
Cancel the request.
- Return type:
None
-
client:
Client
¶
- classmethod from_request_id(client, application, request_id)¶
- Return type:
- get()¶
Wait till the request is completed and return the result of the inference call.
- Return type:
Dict
[str
,Any
]
- fal_client.client.encode(data, content_type)¶
Encode the given data blob to a data URL with the specified content type.
- Return type:
str
- fal_client.client.encode_file(path)¶
Encode a file from the local filesystem to a data URL with the inferred content type.
- Return type:
str
- fal_client.client.encode_image(image, format='jpeg')¶
Encode a pillow image object to a data URL with the specified format.
- Return type:
str
Module contents¶
- class fal_client.AsyncClient(key=None, default_timeout=120.0)¶
Bases:
object
- async cancel(application, request_id)¶
- Return type:
None
-
default_timeout:
float
= 120.0¶
- get_handle(application, request_id)¶
- Return type:
-
key:
str
|None
= None¶
- async result(application, request_id)¶
- Return type:
Dict
[str
,Any
]
- async run(application, arguments, *, path='', timeout=None, hint=None)¶
Run an application with the given arguments (which will be JSON serialized). The path parameter can be used to specify a subpath when applicable. This method will return the result of the inference call directly.
- Return type:
Dict
[str
,Any
]
- async stream(application, arguments, *, path='/stream', timeout=None)¶
Stream the output of an application with the given arguments (which will be JSON serialized). This is only supported at a few select applications at the moment, so be sure to first consult with the documentation of individual applications to see if this is supported.
The function will iterate over each event that is streamed from the server.
- Return type:
AsyncIterator
[dict
[str
,Any
]]
- async submit(application, arguments, *, path='', hint=None, webhook_url=None, priority=None)¶
Submit an application with the given arguments (which will be JSON serialized). The path parameter can be used to specify a subpath when applicable. This method will return a handle to the request that can be used to check the status and retrieve the result of the inference call when it is done.
- Return type:
- async subscribe(application, arguments, *, path='', hint=None, with_logs=False, on_enqueue=None, on_queue_update=None, priority=None)¶
- async upload(data, content_type, file_name=None)¶
Upload the given data blob to the CDN and return the access URL. The content type should be specified as the second argument. Use upload_file or upload_image for convenience.
- Return type:
str
- async upload_file(path)¶
Upload a file from the local filesystem to the CDN and return the access URL.
- Return type:
str
- async upload_image(image, format='jpeg')¶
Upload a pillow image object to the CDN and return the access URL.
- Return type:
str
- class fal_client.AsyncRequestHandle(request_id, response_url, status_url, cancel_url, client)¶
Bases:
_BaseRequestHandle
- async cancel()¶
Cancel the request.
- Return type:
None
-
cancel_url:
str
¶
-
client:
AsyncClient
¶
- classmethod from_request_id(client, application, request_id)¶
- Return type:
- async get()¶
Wait till the request is completed and return the result.
- Return type:
Dict
[str
,Any
]
- async iter_events(*, with_logs=False, interval=0.1)¶
Continuously poll for the status of the request and yield it at each interval till the request is completed. If with_logs is True, logs will be included in the response.
- Return type:
AsyncIterator
[Status
]
-
request_id:
str
¶
-
response_url:
str
¶
- async status(*, with_logs=False)¶
Returns the status of the request (which can be one of the following: Queued, InProgress, Completed). If with_logs is True, logs will be included for InProgress and Completed statuses.
- Return type:
-
status_url:
str
¶
- class fal_client.Completed(logs, metrics)¶
Bases:
Status
Indicates the request has been completed and the result can be gathered. The logs field will contain the logs if the status operation was called with the with_logs parameter set to True. Metrics might contain the inference time, and other internal metadata (number of tokens processed, etc.).
-
logs:
list
[dict
[str
,Any
]] |None
¶
-
metrics:
dict
[str
,Any
]¶
-
logs:
- class fal_client.InProgress(logs)¶
Bases:
Status
Indicates the request is currently being processed. If the status operation called with the with_logs parameter set to True, the logs field will be a list of log objects.
-
logs:
list
[dict
[str
,Any
]] |None
¶
-
logs:
- class fal_client.Queued(position)¶
Bases:
Status
Indicates the request is enqueued and waiting to be processed. The position field indicates the relative position in the queue (0-indexed).
-
position:
int
¶
-
position:
- class fal_client.Status¶
Bases:
object
- class fal_client.SyncClient(key=None, default_timeout=120.0)¶
Bases:
object
- cancel(application, request_id)¶
- Return type:
None
-
default_timeout:
float
= 120.0¶
- get_handle(application, request_id)¶
- Return type:
-
key:
str
|None
= None¶
- result(application, request_id)¶
- Return type:
Dict
[str
,Any
]
- run(application, arguments, *, path='', timeout=None, hint=None)¶
Run an application with the given arguments (which will be JSON serialized). The path parameter can be used to specify a subpath when applicable. This method will return the result of the inference call directly.
- Return type:
Dict
[str
,Any
]
- stream(application, arguments, *, path='/stream', timeout=None)¶
Stream the output of an application with the given arguments (which will be JSON serialized). This is only supported at a few select applications at the moment, so be sure to first consult with the documentation of individual applications to see if this is supported.
The function will iterate over each event that is streamed from the server.
- Return type:
Iterator
[dict
[str
,Any
]]
- submit(application, arguments, *, path='', hint=None, webhook_url=None, priority=None)¶
Submit an application with the given arguments (which will be JSON serialized). The path parameter can be used to specify a subpath when applicable. This method will return a handle to the request that can be used to check the status and retrieve the result of the inference call when it is done.
- Return type:
- subscribe(application, arguments, *, path='', hint=None, with_logs=False, on_enqueue=None, on_queue_update=None, priority=None)¶
- upload(data, content_type, file_name=None)¶
Upload the given data blob to the CDN and return the access URL. The content type should be specified as the second argument. Use upload_file or upload_image for convenience.
- Return type:
str
- upload_file(path)¶
Upload a file from the local filesystem to the CDN and return the access URL.
- Return type:
str
- upload_image(image, format='jpeg')¶
Upload a pillow image object to the CDN and return the access URL.
- Return type:
str
- class fal_client.SyncRequestHandle(request_id, response_url, status_url, cancel_url, client)¶
Bases:
_BaseRequestHandle
- cancel()¶
Cancel the request.
- Return type:
None
-
cancel_url:
str
¶
-
client:
Client
¶
- classmethod from_request_id(client, application, request_id)¶
- Return type:
- get()¶
Wait till the request is completed and return the result of the inference call.
- Return type:
Dict
[str
,Any
]
- iter_events(*, with_logs=False, interval=0.1)¶
Continuously poll for the status of the request and yield it at each interval till the request is completed. If with_logs is True, logs will be included in the response.
- Return type:
Iterator
[Status
]
-
request_id:
str
¶
-
response_url:
str
¶
- status(*, with_logs=False)¶
Returns the status of the request (which can be one of the following: Queued, InProgress, Completed). If with_logs is True, logs will be included for InProgress and Completed statuses.
- Return type:
-
status_url:
str
¶
- fal_client.cancel(application, request_id)¶
- Return type:
None
- async fal_client.cancel_async(application, request_id)¶
- Return type:
None
- fal_client.encode(data, content_type)¶
Encode the given data blob to a data URL with the specified content type.
- Return type:
str
- fal_client.encode_file(path)¶
Encode a file from the local filesystem to a data URL with the inferred content type.
- Return type:
str
- fal_client.encode_image(image, format='jpeg')¶
Encode a pillow image object to a data URL with the specified format.
- Return type:
str
- fal_client.result(application, request_id)¶
- Return type:
Dict
[str
,Any
]
- async fal_client.result_async(application, request_id)¶
- Return type:
Dict
[str
,Any
]
- fal_client.run(application, arguments, *, path='', timeout=None, hint=None)¶
Run an application with the given arguments (which will be JSON serialized). The path parameter can be used to specify a subpath when applicable. This method will return the result of the inference call directly.
- Return type:
Dict
[str
,Any
]
- async fal_client.run_async(application, arguments, *, path='', timeout=None, hint=None)¶
Run an application with the given arguments (which will be JSON serialized). The path parameter can be used to specify a subpath when applicable. This method will return the result of the inference call directly.
- Return type:
Dict
[str
,Any
]
- fal_client.stream(application, arguments, *, path='/stream', timeout=None)¶
Stream the output of an application with the given arguments (which will be JSON serialized). This is only supported at a few select applications at the moment, so be sure to first consult with the documentation of individual applications to see if this is supported.
The function will iterate over each event that is streamed from the server.
- Return type:
Iterator
[dict
[str
,Any
]]
- async fal_client.stream_async(application, arguments, *, path='/stream', timeout=None)¶
Stream the output of an application with the given arguments (which will be JSON serialized). This is only supported at a few select applications at the moment, so be sure to first consult with the documentation of individual applications to see if this is supported.
The function will iterate over each event that is streamed from the server.
- Return type:
AsyncIterator
[dict
[str
,Any
]]
- fal_client.submit(application, arguments, *, path='', hint=None, webhook_url=None, priority=None)¶
Submit an application with the given arguments (which will be JSON serialized). The path parameter can be used to specify a subpath when applicable. This method will return a handle to the request that can be used to check the status and retrieve the result of the inference call when it is done.
- Return type:
- async fal_client.submit_async(application, arguments, *, path='', hint=None, webhook_url=None, priority=None)¶
Submit an application with the given arguments (which will be JSON serialized). The path parameter can be used to specify a subpath when applicable. This method will return a handle to the request that can be used to check the status and retrieve the result of the inference call when it is done.
- Return type:
- fal_client.subscribe(application, arguments, *, path='', hint=None, with_logs=False, on_enqueue=None, on_queue_update=None, priority=None)¶
- async fal_client.subscribe_async(application, arguments, *, path='', hint=None, with_logs=False, on_enqueue=None, on_queue_update=None, priority=None)¶